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Abstract— This work deals with the problems of 

uninterruptible power supplies (UPS) based on New Single-

Phase to Three-Phase Hybrid UPS System with reduced number 

of switches built in two stages: an input half-bridge rectifier and 

an output inverter. The two blocks are joined by a continuous 

intermediate bus. The objective of control is threefold: i) 

correcting the power factor "PFC", ii) regulating the DC bus 

voltage, iii) generation of a symmetrical three-phase system at 

the output even if the load is unsymmetrical. The synthesis of the 

controllers has been reached by the technical nonlinear 

backstepping control. A detailed stability analysis system was 

performed. The performances of regulators have been validated 

by numerical simulation in MATLAB / SIMULINK. 

 

Keywords—UPS,  Backstepping,  Nonlinear Control,  PFC, 

Stability. 

I. INTRODUCTION 

Uninterruptible power supply (UPS) systems provide 
uninterrupted, reliable, and high-quality power for vital 
loads. They, in fact, protect sensitive loads against power 
outages as well as overvoltage and undervoltage 
conditions.UPS systems also suppress line transients and 
harmonic disturbances. Applications of UPS systems include 
medical facilities, life support systems, data storage and 
computer systems, emergency equipment, 
telecommunications and industrial processing. 

The advances in power electronics during the past two 
decades have resulted in a great variety of new topologies 
and control strategies of UPS systems [1-5]. The issue of 
reducing the cost of converters has recently been attracting 
the attention of researchers [6-7]. 

In this paper, we develop non-linear control for New 
Single-Phase to Three-Phase Hybrid UPS System with 
reduced number of switches (Figure 1), which is based on 
half-bridge converter topology. Its consists of an input 
inductor L and three IGBT-diode PWM control regulators to 
ensure the regulation of the component DC voltage output of 
rectifier , The power factor correction and generating a 

 
* 

 

symmetrical three-phase system. To achieve these objectives 
three control loops are used. The first inner loop is designed 
so that the input current is sinusoidal and in phase with the 
supply voltage, a unity power factor is guaranteed. The 
second inner loop is designed such that  the inverter 
generating a symmetrical three-phase system whose the 
reference signals for the two inverter legs are phase shifted 
120° from each other and have the same amplitude and 

frequency of the signal ( )av t . The purpose of the outer loop 

is adjusted β  in such way that the DC component of the 

converter output voltage coincide with the desired changes in 
spite of the load setpoint.The control law is synthesized using 
nonlinear control applying backstepping technique. We must 
ensure at all times that the overall stability of the closed-loop 
system is achieved [8-10].  

This paper is organized as follows: Section 2 is devoted 
to the description of New Single-Phase to Three-Phase 
Hybrid UPS System with reduced number of switches and its 
model, the synthesis of controllers is developed in section 3 
and discussed in section 4. The closed loop performances are 
illustrated by simulation in Section 5. The conclusion ends 
the paper. 

II. DESCRIPTION AND MODELING OF SYSTEM  

The proposed new UPS system, shown in Figure 1, the 
input switch is on and the power is passed directly from the 
AC line to load in phase A. At the same time, the first IGBT 
leg with switches S1 and S2 works as a half-bridge rectifier 
and supplies the DC-link bus with power. The other two 
IGBT legs work in inverter mode the same way as the back-
end inverter and feed the loads connected in phases B and C. 

The three legs of the system are controlled by three PWM 

generators generating three binary control signals: µ  for 

controlling the pair of switches ( )1 2S ,S , 1µ  for the 

pair ( )3 4S ,S and 2µ  for the pair ( )5 6S ,S . These are defined 

as follows:  
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1 if S is ON and S is OFF

1 if S is ON and S is OFF
µ


= 

−
 

3 4
1

4 3

1 if S is ON and S is OFF

1 if S is ON and S is OFF
µ


= 

−
 

5 6
2

6 5

1 if S is ON and S is OFF

1 if S is ON and S is OFF
µ


= 

−
 

 

Figure 1.   Single-Phase to Three-Phase Hybrid UPS System. 

Switched model of the New Single-Phase to Three-Phase 
Hybrid given by Figure 1, can be obtained using simply the 
standard Kirchhoff's laws. So doing, one has: 

( ) ( )f 1 2
n

di v v
L v 1 1

dt 2 2
µ µ= − + + −      (1a) 

( ) ( ) ( )f b c1
1 2

i i idv
C 1 1 1

dt 2 2 2
µ µ µ= + − + − +                 (1b) 

( ) ( ) ( )f b c2
1 2

i i idv
C 1 1 1

dt 2 2 2
µ µ µ= − − + − + −       (1c) 

a
a n a

di
L v v

dt
= −               (1d) 

( ) ( )b 1 2
b b 1 1

di v v
L v 1 1

dt 2 2
µ µ= − + + − −              (1e) 

( ) ( )c 1 2
c c 2 2

di v v
L v 1 1

dt 2 2
µ µ= − + + − −              (1f) 

1a
a a a

a

dv
C i v

dt R
= −               (1g)  

1b
b b b

b

dv
C i v

dt R
= −               (1h) 

1c
c c c

c

dv
C i v

dt R
= −                      (1i)  

The model (1) is useful for building up an accurate 
simulator of the Single-Phase to Three-Phase Hybrid. 
However, it cannot be based upon in the control design as it 

involves binary control inputs, namely µ , 1µ  and 2µ  . This 

kind of difficulty is generally coped with by resorting to 
average models. Signal averaging is performed over cutting 
intervals (e.g. Abouloifa et al., 2003). The obtained average 
model is the following: 

1 n 8 9

1 1
Lx v x u x

2 2
= − −�                         (2a) 

2 3 2

1
b

b

C x x x
R

= −�                     (2b) 

b 3 2 8 1 9

1 1
L x x x u x

2 2
= − + +�               (2c) 

4 5 4

1
c

c

C x x x
R

= −�                 (2d) 

c 5 4 8 2 9

1 1
L x x x u x

2 2
= − + +�               (2e) 

6 7 6

1
a

a

C x x x
R

= −�                   (2f) 

a 7 6 nL x x v= − +�               (2g) 

 

8 1 1 3 2 5C x ux u x u x= − −�
                 (2h) 

 

9 1 3 5C x x x x= − −�                   (2i) 

where the state variables 1x  , 2x , 3x , 4x , 5x , 6x , 7x , 

8x , 9x , u , 1u  and 2u  denote respectively the average values, 

over a cutting period, of variables  fi  , bv  , bi , cv , ci , av  , 

ai , 1 2v v+  , 1 2v v− ,  µ , 1µ  and 2µ . 

 

III. CONTROLLER DESIGN  

A.  Control Objectives  

Control objectives considered for this class of Single-
Phase to Three-Phase Hybrid are three: 
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• The half-bridge rectifier must operate with a power 
factor close to unity. This is achieved by ensuring 
that, in equilibrium regime, the current drawn by the 
converter should be, in average, equal the reference 

signal defined by ( )*
1 n 7x v t xβ= − . 

•  The DC component of the voltage 1 2v v+  must be 

stabilized to a desired reference voltage namely *
8x . 

•  The three-phase DC/AC inverter must generate a 
symmetrical three-phase system whose the reference 
signals for the two inverter legs are phase shifted 
120

°
 from each other and have the same amplitude 

and frequency of the signal 6x . 

The proposed control system has the structure shown in 

Fig. 2. Both controllers 1 and 2 will be synthesized using the 

backstepping approach and the third will be done by a 

version of proportional-integral corrector. 

 

 

Figure 2.  Block diagram of regulators 

B. Current inner loop design (regulator 1) 

The control objective is to force the current 1x  to follow 

the desired reference signal ( )*
1 n 7x v t xβ= − , which β  is a 

positive real signal to be defined later. To achieve this, we 
propose the control backstepping approach. 

we introduce the following tracking error on the 

current 1x : 

( )*
1 1 1e L x x= −        (3) 

where *
1x  denotes the reference signal. 

Using equation (2a), time derivative of the equation (3) 
relates the following error dynamics: 

 

1
1 8 9

1 1

2 2

*

n

dx
e v x u x L

dt
= − − −�            (4)   

                  

The actual control variable, namely u , has emerged for 

the first time in equation (4). An appropriate control law for 

generating u  must now be determined so that the 1e -system 

is made globally asymptotically stable. To this end, consider 
the Lyapunov function candidate: 

 

2
1 1

1

2
V e=     (5) 

 

Using (4) and (5), the time-derivative of 1V  can be 

written as: 

 

1 1 n 8 9 n 7

1 1
V e v x u x L v Lx

2 2
β

 
= − − − + 

 
� � �       (6) 

 

This shows that, for the 1e -system to be globally 

asymptotically stable, it is sufficient to choose the control u  

so that 2
1 1 1V d e= −�  which, due to (6), amounts to ensuring 

that:  

 

1 1 1e d e= −�   (7) 

 

where 1d  is a positive constant synthesis. 

Comparing   (7) and (4) yields the following backstepping 
control law: 

 

1 1 6 9
8

2 1
1

2
n n

a a

L L
u d e v x x L v

x L L
β

  
= + + − − −   

  
�      (8) 

 

Proposition 1.Consider the Single-Phase to Three-Phase 
Hybrid given by Fig 1, which is described by the average 

model (2a). If the first derivative of β  is available, then the 

control law (8) guarantees asymptotic stability of the error 

signal 1e . 

C. Three-phase system inner loop design (regulator 2) 

The controller must force the three-phase system of 
voltage of three-phase DC/AC inverter to follow the 

reference signals 2 6
3

* T
x x t

 
= − 

 
and 4 6

2

3

* T
x x t

 
= − 

 
. 

The study will be developed for any non-symmetrical 
resistive load connected to the output of the converter, 
Regulator synthesis is terminated in two steps since the 



International Conference on Control, Engineering & Information Technology (CEIT’14) 

Proceedings - Copyright IPCO-2014 

ISSN 2356-5608 

 

112 

 

 

relative degree of the two subsystems described respectively 
by the equations [(2b), (2c)] and [(2d), (2e)] is equal to two. 

Step 1: Stabilization of the subsystem ( )2 4e ,e  

Let us introduce the error vector of the two voltages 2x  

and 4x is: 

 

( )
( )

*
b 2 2

2
1

*
4

c 4 4

C x xe
Z

e C x x

 −   = =   
   −

 

  (9) 

 

Using (2b) and (2d) time-derivation of (9) yields the 
following error dynamics: 

 

*2
3 b 2

b2
1

*4 4
5 c 4

c

x
x C x

Re
Z

e x
x C x

R

 
− − 

   = =     − − 
 

�

�
�

�
�

              (10) 

 

In (10), 3x  and  5x  stands for the (virtual) control 

variables. Then, 2e  and 4e can be regulated to zero 

respectively if 3 3
*x x= and 5 5

*x x=  where *
X , called 

stabilizing function vector, is defined by: 

 

*2
2 2 b 2*

b3*

*
*45

4 4 c 4

c

x
d e C x

Rx
X

xx
d e C x

R

 
− + +  
  = =

   
  − + + 

 

�

�

          (11) 

 

where ( )2 4d ,d  are design parameters.  

If 3x and 5x  were actually the controls in (10), imply 

that
2 2 2

1
4 4 4

e d e
Z

e d e

−   
= =   

−   

�
�

�
: which clearly establishes 

asymptotic stability of (10) with respect to the Lyapunov 
function:  

 

2 2
1 2 4W 0.5e 0.5e= +                (12) 

 

Then, time-derivation of 1W  would be: 

 

2 2
1 2 2 4 4W d e d e 0= − − <�                (13) 

As 3x  and 5x are not the actual controls in (10), one 

cannot let 3 3
*x x=  and 5 5

*x x= . However, we retain the 

expression of the stabilizing function vector *
X  and 

introduce a new error vector, between the virtual controls and 
its desired. 

 

*
3 3 3

2 *
5 5 5

e x x
Z

e x x

 − 
 = =   −   

                 (14) 

 

Then, (10) becomes, using (11) and (14) 

 

2 2 2 3
1

4 4 4 5

e d e e
Z

e d e e

− +   
= =   

− +   

�
�

�
                  (15) 

 

Also, the derivative of Lyapunov function (13) becomes:  

 

2 2
1 2 2 2 3 4 4 4 5W d e e e d e e e= − + − +�                                       (16) 

 
This completes the first step. 

 

Step 2: Stabilization subsystem ( )2 3 4 5e ,e ,e ,e  

Time-derivation of 2Z gives, using (2c), (2e) and (14) 

 

*
2 8 1 9 3

b b b3
2

*5
4 8 2 9 5

c c c

1 1 1
x x u x x

L 2L 2Le
Z

e 1 1 1
x x u x x

L 2L 2L

 
− + + − 

   = =     − + + − 
 

�

�
�

�
�

               (17) 

The actual control variables, namely 1u and 2u , appears 

for the first time in (17). An appropriate control laws for 

generating 1u  and 2u has now to be found for the system (10) 

and (17) whose state vector is ( )2 3 4 5e ,e ,e ,e . Let us consider 

the Lyapunov function 2W . 

 

 2 2
2 1 3 5W W 0.5e 0.5e= + +                                                   (18) 

                                 

 

Using (16), the time-derivative of 2W  can be rewritten as: 

 

( ) ( )2 2
2 2 2 3 2 3 4 4 5 4 5W d e e e e d e e e e= − + + − + +� � �                  (19)             

This shows that, for the ( )2 3 4 5e ,e ,e ,e -system to be 

globally asymptotically stable, it is sufficient to choose the 

control 1u  and 2u  so that 2 2 2 2
2 2 2 3 3 4 4 5 5W d e d e d e d e= − − − −�  

which, due to (19), amounts to ensuring that:  
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3 2 3 3
2

5 4 5 5

e e d e
Z

e e d e

− −   
= =   

− −   

�
�

�
                                                (20) 

 

Comparing (20) and (17) yields the following 

backstepping control laws 1u  and 2u : 

 

*
1 2 9 b 3 b 2 b 3 3

8

2 1
u x x L x L e L d e

x 2

 
= − + − − 

 
�      (21) 

*
2 4 9 c 5 c 4 c 5 5

8

2 1
u x x L x L e L d e

x 2

 
= − + − − 

 
�                      (22)  

 

The results thus established are summarized in the following 

proposition. 

 

Proposition 2. Consider the control system, next called 
inner closed-loop, consisting of the two subsystems (2b)-(2c), 
(2d)-(2e) and the control laws (21), (22). One has the 
following. 

The inner closed-loop system undergoes the following 

equation in the ( )2 3 4 5e ,e ,e ,e -coordinates    

 

2 2 2

3 3 3

4 4 4

5 5 5

e d 1 0 0 e

e 1 d 0 0 e

e 0 0 d 1 e

e 0 0 1 d e

−    
    

− −    =
    −
        − −    

�

�

�

�

                     (23) 

 
Furthermore, (23) is globally asymptotically stable with 

respect to the Lyapunov function 2 2
2 1 3 5W W 0.5e 0.5e= + +  

because 2 2 2 2
2 2 2 3 3 4 4 5 5W d e d e d e d e= − − − −�  is negative 

definite. As (23) is linear, then the error vector converges 
exponentially fast to zero, whatever the initial conditions. It 
follows in particular that the (average) three-phase system of 
voltage tends asymptotically (and exponentially fast) to its 

reference signals 2 6
3

* T
x x t

 
= − 

 
and 4 6

2

3

* T
x x t

 
= − 

 
. 

D. DC Bus voltage outer loop design (regulator 3) 

• Relation between β  and 8x  

The aim of the outer loop is to generate a tuning law for 

the signal β  so that the output voltage 8x is steered to a 

given reference value 8
*x .  

Hypothesis: The inner loops of the input current 
(regulator 1) and the Three-phase system (regulator 2) are 

assumed to have fast dynamics relative the outer loop of DC 
voltage (regulator 3). 

 

The first step in designing such a loop is to establish a 

relationship between β  (the control signal) and the squared 

output voltage 2
8y x= . This is the subject of the following 

proposition. 

 

Proposition 3.Consider the Single-Phase to Three-Phase 
Hybrid described by (2a)-(2i) augmented with the inner 
control laws defined by (8), (21) and (22). Under the same 
assumptions as in proposition 1 and proposition 2, one has 
the following: 

The squared-voltage 2
8y x=  varies, in response to the 

tuning ratio β , according to the following first-order time-

varying linear equation: 

 

( ) ( ) ( )iy f p t q xβ= + +�                                                   (24) 

 

with  

 

( ) 0f kβ β=   ; ( ) ( ) ( )2
0 12 2p t k cos t k sin tβ ω β ω= − −  

 

( ) 7 7 6 1 9 1 2 3 9 3 3 3 4 5 9 5 5 5

4 1 1 1
1

2 2 2

* * * * * * * * * * * *
i n n b c

a a

L L
q x L vx vx x x x x x x x x L xx x x x x L xx

C L L
β

  
= − + − − − + − − + −  
   
� � �

  

 

where 

 
2

0

2
1

a

E L
k

C L

 
= + 

 
    ;     

2

1

2E
k L

C
ω=  

 
Proof: Based on this hypothesis, the control laws (8), 

(21) and (22) are reduced    to:    

6 9
8

2 1
1

2
n n

a a

L L
u v x x L v

x L L
β

  
= + − − −  

   
�       

with        ( )nv E sin tω=  

*
1 2 9 b 3

8

2 1
u x x L x

x 2

 
= − + 

 
�    and   *

2 4 9 c 5

8

2 1
u x x L x

x 2

 
= − + 

 
�  

 

Referring equations u , 1u  and 2u in equation (2h), we 

obtain: 
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* * *
8 n 6 9 n 1 2 9 b 3 3

8 a a 8

* *
4 9 c 5 5

8

2 L L 1 2 1
Cx 1 v x x L v x x x L x x

x L L 2 x 2

2 1
x x L x x

x 2

β
    

= + − − − − − +          

 
− − + 

 

� � �

�

 

 

with        ( )*
1 n 7x v t xβ= −  

 

Implies that: 

 

  

If is lying  2
8y x=  , its derivative is: 

 

( ) ( )
2

2 2
7 7 6 1

9 1 2 3 9 3 3 3 4 5 9 5 5 5

4 1 4
1 2 1

2

4 1 1 1

2 2 2

*
n n

a a a

* * * * * * * * *
b c

E L L L
y sin t L sin t L vx vx x x

C L C L L

x x xx x x Lx x xx xx Lxx
C

β ω ωβ ω β
      

= + − − − + −      
         

 
− − + − + + − + 
 

� �

� �

 

Finally, we obtain the equation (24) and complete the 
proof of Proposition 3 

 

• Squared output voltage control 

The signal ( )f β  is considered as a (virtual) control 

input of the system. The term ( )p t  is treated as a 

perturbation. The current problem is to design a suitable 

control law so that the square of the voltage 2
8y x= follows a 

reference signal given ( )
2

8
* *y x= . As the term 

disruptive ( )p t  in (25), is periodic with zero mean and a 

control law PI with compensation for non-linearity ( )iq x , 

should suffice: 

( ) ( )6 6 7 7
*

if d e d e q x yβ = + − +                                       (25) 

with    6
*e y y= −      ;  7 6

0

t

e e dτ= ∫  

Substituting equation (25) in (24), we obtain the 

Equations errors 6e and 7e . 

 

( )6 6 6 7 7

7 6

e d e d e p t

e e

 = − − −


=

�

�
                                                (26) 

 

At this point, the regulator parameters ( )6 7d ,d  are any 

positives real constants. The following analysis will show 
clearly how they should be chosen so that the control 
objectives are achieved. 

The actual control signal β  can be easily obtained from 

(25) using the fact that ( )1f .−  exists. 

IV. ANALYSIS OF CLOSED LOOP STABILITY  

By combining (7), (15), (20) and (26), we obtain the 
following equation describing the evolution of the state 

vector, denoted  ( )1 2 3 4 5 6 7

T

rE e e e e e e e= : 

 

r rE AE P= +�             (27) 

 

where  

 

1

2

3

4

5

6 7

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 0

0 0 0 0 0 1 0

d

d

d

A d

d

d d

− 
 

− 
 − −
 

= − 
 − −
 

− − 
 
 

 

( )( )0 0 0 0 0 0
T

P p t= −  

The stability of the above system will now be analyzed 
using the averaging theory. Now introduce the time-scale 
change tτ ω= . It is readily seen from (27) that 

rZ( ) E ( / )τ τ ω≡   undergoes the differential equation: 

( )
( ) ( )

dZ
AZ P

d
τ

τ
ε τ ε τ

τ
= +                                              (28) 

where  

( )( )( ) 0 0 0 0 0 0
T

P pτ τ τ ω= −  

 
Now, let us introduce the average functions: 

2

0 0

1
lim ( )

2
Z Z d

π

ε
τ τ

π→
= ∫  

* * * * * *
8 8 n 1 n 1 6 1 9 1 2 3 9 3

a a

* * * * * *
b 3 3 4 5 9 5 c 5 5

L L 1 1
Cx x 2 1 v x L v x 2 x x x x x x x x

L L 2 2

1
2 Lx x x x x x Lx x

2

β
    

= + − − − − + −     
     

 
− + − + 

 

� �

� �
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2

0 0

1
lim ( )

2
P P d

π

τ τ
ε

τ τ
π→

= ∫  

 

It follows from (28) that: 

( )0 0 0 0 0 0 0
T

Pτ =                                          (29) 

  

In order to get stability results regarding the system of 
interest (27), it is sufficient (thanks to averaging theory) to 
analyze the following averaged system: 

.

Z AZε=                                                                            (30)

                   

                       

To this end, notice that (30) has a unique equilibrium at: 

( )*
0 0 0 0 0 0 0

T
Z =                                          (31)              

                                   
On the other hand, as (30) is linear, the stability 

properties of its equilibrium are fully determined by the state-

matrix A  More specifically, the equilibrium *Z  will be 

globally exponentially stable if the matrix A  is Hurwitz. To 
this end, we note that the eigen values are zeros the following 
characteristic polynomial: 

 

( ) 7 6 5 4 3 2 1
6 5 4 3 2 1 0det I A a a a a a a aλ λ λ λ λ λ λ λ− = + + + + + + +

 (32)             

where 

 

6 1 2 3 4 5 7a d d d d d d= + + + + +   

( ) ( )5 1 2 4 5 4 4 5 5 1 21a d d d d b d d b d d= + + + + + +  

( )( )( ) ( )

( )

4 4 5 4 1 2 5 1 2 4 5 3 7 1 2 5

1 2 3 6 2 3 4 5 6 7

1a d d b d d b d d d d d d d d b

d d d d d d d d d d

= + + + + + + + +

+ + + + − − − +

 

( ) ( )( )3 1 3 7 1 6 4 5 3 4 5 2 1 61 1a b b d d d d d b d d b d d= + + − − + − + + − −

 

( )( ) ( )( )2 0 2 1 7 2 4 5 4 5 1 1 6 7 1 6 4 51a b b d d b d d d d b d d d d d d d= + − + + + − − + + −

 

( ) ( ) ( ) ( )( )1 1 4 5 0 1 7 4 5 1 6 7 4 51 1a b d d b d d d d d d d d d= + + − + + + −

 

( ) ( )0 0 4 5 1 7 4 51 1a b d d d d d d= + + −  

 

with 

  

5 3 6 7b d d d= + ;    4 1 2 3 7b d d d d= + + + ;  

( )3 1 2 1 2 51b d d d d b= + + +
 

( ) ( )2 3 7 1 2 5 1 2 3 6b d d d d b d d d d= + + + +  

( )1 1 2 5 1 2 3 7b d d b d d d d= + +   ; 0 1 2 3 7b d d d d=  

 

The application of famous algebraic Routh criterion 
implies that the system is stable at the condition that:  

0 0a >  ;   6 0a > ; 6 5 4 0a a a− >  

( ) ( )1 6 5 4 4 6 3 2 6 0c a a a a a a a a= − − − >  

( ) ( ) ( ) ( )( )2 1 6 3 2 6 5 4 6 5 4 2 6 1 0 6 0c c a a a a a a a a a a a a a a= − − − − − − >

 

( ) ( )( ) ( ) ( )( )3 2 6 5 4 2 6 1 0 6 1 6 1 0 1 6 5 4 0 0c c a a a a a a a a c a a a c a a a a= − − − − − − − >

 

( ) ( )( )4 3 6 1 0 1 6 5 4 0 2 0 0c c a a a c a a a a c a= − − − − >
 

 

The equilibrium *Z  of the linear system (30) is actually 

globally exponentially stable.  Applying e.g. Theorem 4.10 in 

[11], one concludes that there exists a 0* >ε   such that 

for *εε < , the differential equation (30) has a harmonic 

solution Z Z( t , )ε= that continuously depends on ε . 

Moreover, one has 
*

0
lim ( , )Z t Z
ε

ε
→

=  . This, together with 

(31), yields in particular that: 

 

 1
0

lim ( , ) 0e t
ε

ε
→

= , 2
0

lim ( , ) 0e t
ε

ε
→

= , 3
0

lim ( , ) 0e t
ε

ε
→

=  

 4
0

lim ( , ) 0e t
ε

ε
→

= , 5
0

lim ( , )e t
ε

ε
→

= 0, 6
0

lim ( , ) 0e t
ε

ε
→

=  

7
0

lim ( , ) 0e t
ε

ε
→

=
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V. NUMERICAL SIMULATIONS 

The performances of proposed controllers were validated 

by simulation in MATLAB/SIMULINK environment. The 

parameters of the controlled system are given in the table 

below: 

TABLE I.   SYSTEM PARAMETERS CONTROLLED 

Parameters Symbol Values 

Network 
E  

f  
220 2 V  

50Hz  

Rectifier L  2mH  

DC Bus 

 
C  10mF  

DC/AC Converter 

 

a b cL L L= =  

a b cC C C= =  

10mH  

100 Fµ  

 

Regulator 1 

 
1d  1000  

Regulator 2 

 

2 4d d=  

3 5d d=  

1000  

500  

Regulator 3 

 

6d  

7d  

62*10−
 

56*10−
 

 

 

The mains voltage is fixed at its nominal value 

( ) ( )nv t E sin tω=  and the reference DC bus voltage changes 

from 800V to 1000V. Figures 3 to 7 show the simulation 

results of uninterrupted power system based on the New 

Single-Phase to Three-Phase Hybrid with reduced number of 

switches for a nonsymmetrical resistive load : aR 10Ω= , 

bR 15Ω=   and cR 20Ω= . 

Figures 3 show the control signals µ  , 1µ and 2µ  are 

bounded. In Figure 4, we see that the current ni  and the input 

voltage nv  are sinusoidal and in phase. This shows that the 

correction of the power factor is well established.  Figure 5 

and 6 shows the evolution of the output phase voltages av , 

bv and cv  as well as the output load currents a _loadi , b _loadi  

and c _ loadi . 

 Finally, Figure 7 shows that the DC bus voltage 8x  

perfectly follows (in average) its reference. In addition, we 

note that the ripple voltage oscillates at a frequency 2ω , but 

its amplitude is too low compared to the average value of 

signals. 
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Figure 3.  Control signals u , 1u and 2u  

0 0.02 0.04 0.06 0.08 0.1
-400

-300

-200

-100

0

100

200

300

400

Time(s)

 

 

vn

3*in

 

Figure 4.    Input voltage nv  and input current n3* i  
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Figure 5.   Phase output voltages av , bv and cv  
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Figure 6.   Load phase current  ai , bi and ci  
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Figure 7.   DC bus voltage 8x  and reference 
*
8x  

VI. CONCLUSION 

In this paper, a nonlinear controller is proposed for the 

New Single-Phase to Three-Phase Hybrid UPS System with 

reduced number of switches used in power systems without 

interruption .It has been formally established that the 

obtained controller meets its objectives such as: 

 

• High-quality sinusoidal output voltages, even with 

nonsymmetrical loads. 

• Unity input power factor PFC feature is enabled. 

• Regulation of the DC bus voltage. 

• Excellent transient characteristics and stability 

. 
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